The weak law of large numbers

Robbie Nohra

November 2018

Below is a brief discussion on the weak law of large numbers, a very standard result in probability. I like the proof because of its brevity. The statement of the theorem is as follows.

Convergence in probability

Let $X_1, X_2, ...$ be a sequence of *iid* random variables. Define

$$p_n(\epsilon) := P(|X_n - X| < \epsilon)$$

Let $\delta \in (0,1)$ and let $\epsilon > 0$ be given.

Convergence in probability means that there exists an N such that

$$n > N \implies p_n(\epsilon) \ge 1 - \delta$$
.

 X_n is then said to converge to X in probability*. This is denoted as

$$X_n \stackrel{p}{\to} X$$
.

In words, if one wants to permit X_n to deviate from X by less than an ϵ -margin with at least $[(1 - \delta) \cdot 100]$ % certainty, there will always exist an N which achieves this *for all* n > N (assuming the X_n 's are iid).

Let X be a random variable and let X_1, X_2, \ldots be an infinite sequence of i.i.d. copies of X. Define

$$\overline{X_n} := \frac{\sum_{i=1}^n X_i}{n}.$$

Then,

$$\overline{X_n} \stackrel{p}{\to} \mu := E[X].$$

 $|X_n - X| < \varepsilon$ is the event that X_n deviates from the random variable X in magnitude by not more than ε . $p_n(\varepsilon)$ is the probability of such an

The proof

The proof hinges on the well-known tail-bound,

$$P(h(X) \ge a) \le \frac{Eh(X)}{a}.$$

Where $h \ge 0$.

Let
$$X = \overline{X_n}$$
 and $h(\overline{X_n}) = (\overline{X_n} - \mu)^2$.

Then,

$$\begin{split} P(|\overline{X_n} - \mu| < \varepsilon) &= P((\overline{X_n} - \mu)^2 < \varepsilon^2) \\ &= 1 - P((\overline{X_n} - \mu)^2 \ge \varepsilon^2) \\ &\ge 1 - \frac{E(\overline{X_n} - \mu)^2}{\varepsilon^2} \\ &= 1 - \frac{1}{n} \cdot \frac{\sigma^2}{\varepsilon^2} \end{split}$$

The term

$$-\frac{1}{n}\cdot\frac{\sigma^2}{\epsilon^2}$$

must be bounded below by $-\delta$ in order to obtain the desired inequality

$$1 - \frac{1}{n} \cdot \frac{\sigma^2}{\epsilon^2} \ge 1 - \delta.$$

The only factor free to be altered is n and

$$-\frac{1}{n} \cdot \frac{\sigma^2}{\epsilon^2} \ge -\delta \iff n > \frac{\sigma^2}{\epsilon^2 \delta}.$$

Application

Operationally then, given ϵ , δ , and σ^2 , the weak law of large numbers tells you how large n needs to be in order to fall within ϵ of X with probability $1 - \delta$.

Note the use of the i.i.d. assumption in the penultimate step where $Var \overline{X_n} = \frac{\sigma^2}{n}$